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ARTICLE INFO ABSTRACT

Keywords: Context: Early security requirements identification is crucial in software development, facilitating the integra-
Security Requirements Classification tion of security measures into IT networks and reducing time and costs throughout software life-cycle.
Natural Language Processing Objectives: This paper addresses the limitations of existing methods that leverage Natural Language Processing
Machine Learning (NLP) and machine learning techniques for detecting security requirements. These methods often fall short in
Transformers capturing syntactic and semantic relationships, face challenges in adapting across domains, and rely heavily
on extensive domain-specific data. In this paper we focus on identifying the most effective approaches for this
task, highlighting both domain-specific and domain-independent strategies.
Method: Our methodology encompasses two primary streams of investigation. First, we explore shallow
machine learning techniques, leveraging word embeddings. We test ensemble methods and grid search within
and across domains, evaluating on three industrial datasets. Next, we develop several domain-independent
models based on BERT, tailored to better detect security requirements by incorporating data on software
weaknesses and vulnerabilities.
Results: Our findings reveal that ensemble and grid search methods prove effective in domain-specific
and domain-independent experiments, respectively. However, our custom BERT models showcase domain
independence and adaptability. Notably, the CweCveCodeBERT model excels in Precision and Fl-score,
outperforming existing approaches significantly. It improves Fl-score by ~3% and Precision by ~14% over
the best approach currently in the literature.
Conclusion: BERT-based models, especially with specialized pre-training, show promise for automating secu-
rity requirement detection. This establishes a foundation for software engineering researchers and practitioners
to utilize advanced NLP to improve security in early development phases, fostering the adoption of these
state-of-the-art methods in real-world scenarios.

1. Introduction Current research predominantly employs supervised machine learn-
ing (ML) methods [8-10], which prioritize statistical lexical features

Effective requirements gathering is essential for successful soft- over syntactic structures and semantic relationships. Consequently,
ware development, as inaccuracies or omissions can disrupt the entire these models often struggle to distinguish nuanced contextual mean-
software lifecycle [1,2]. While stakeholder communication mitigates ings, leading to limited generalizability across diverse domains due to

some challenges in requirements engineering (RE), it is often insuffi- their reliance on large, domain-specific datasets [11].
cient for identifying non-functional requirements (NFRs), particularly
security requirements. These requirements are challenging to discern
due to stakeholders’ limited expertise and their implicit presence in
documentation [3-6].

The importance of security as an NFR is underscored by the sub-

stantial financial impact of security breaches [7], necessitating explicit . . )
identification and specification of security requirements, which are broader vulnerability datasets unanswered. Furthermore, its reliance

often implicitly distributed across requirement specifications [8,9]. on One-Class SVM (Support Vector Machine) highlights the need for
The manual identification of security requirements is error-prone exploring alternative classification techniques to improve and facilitate
and time-consuming, highlighting the need for automation. the security requirements identification task.

To address domain-specific limitations, Munaiah et al. [12] pro-
posed a one-class classification model trained on the Common Weak-
ness Enumeration (CWE) database. While this approach demonstrated
the potential of domain-independent approach, it relied solely on CWE
descriptions, leaving questions about the role on the impact of using
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Recognizing these previous findings, in this paper we assess the
effectiveness of shallow and advanced techniques for detecting secu-
rity requirements, emphasizing ML and BERT-based models that offer
the capability of fine-tuning for various NLP-based tasks, including
sequence classification [13,14]. Firstly, we assess if shallow ML mod-
els can identify security requirements within the same domain. This
motivates our first research question:

RQ1l. How effectively can shallow machine learning
algorithms, based on word embeddings, identify security-related
requirements coming from the same domain?

A positive answer to RQ1 provides an alternative approach with
respect to the methodologies previously implemented in [8-10], and
avoiding the dependency on extensive datasets for model training as
done in [10,11]. To address RQ1, we extensively experiment with 5
embedding techniques and 30 ML algorithms, totaling 150 solutions.
After identifying the most effective combinations, we optimize hyperpa-
rameters and leverage ensemble learning (stacking, bagging, voting) in
attempt to improve predictive performance. We evaluate the accuracy
on datasets of requirements previously used in literature, i.e., Common
Electronic Purse (ePurse), Customer Premises Network (CPN), and the
Global Platform Specifications (GPS) [8,9]. In the following, we will re-
fer to this setup experiment with the term intra-domain, as we train and
validate the models on requirements coming from the same domains.

We assess the generalizability of the approach by testing the models
on datasets different from those used for training (meaning that re-
quirements come from another domain). To address this aspect of the
research, we formulate the following research question:

RQ2. How effectively can shallow machine learning
algorithms, based on word embeddings, identify security-related
requirements coming from different domains?

It should be noted that our methodology intentionally limits the
number of projects used to better replicate real-world conditions, where
typically few projects are available. This contrasts with the approach
taken in [11], which utilized 15 diverse projects, of which only three
were from the industrial sector. We consider the work of Li and
Chen [9] as the baseline for these comparisons, as it represents the best
result achieved in this scenario.

To evaluate RQ2, we train several WE and ML combinations on
6 datasets formed by 3 individual collections of requirements (CPN,
ePurse, and GPS), as well as the 3 combinations formed by combining
two of the three collections (CPN & ePurse, CPN & GPS, ePurse &
GPS). The trained models are used to classify security requirements of
datasets not included for training, performing hold-out validation. RQ2
exploration finds optimal hyperparameters for the top combination,
and tests ensemble learning strategies as in RQ1. In the following, we
will refer to this experiment with the term inter-domain, as we train the
models on requirements coming from a particular set of domains and
then validate on requirements coming from different domains.

The challenge of acquiring datasets that are independent of specific
domains becomes evident, as they are scarce and demand extensive
curation by domain experts. To overcome this constraint, we broaden
our search beyond the problem domain to include solution domains,
specifically focusing on the CWE and Common Vulnerabilities and
Exposures (CVE). CWE serves as a formal catalog of software weakness
types, while CVE provides a standardized list of known cybersecurity
vulnerabilities. This method mirrors that of [12], where a one-class
classification model was trained on descriptions from the CWE to con-
textualize system weaknesses. Building on this concept, we formulate
the following research question:

RQ3. How effective can pre-training context in BERT transform-
ers be on the detection of security-related requirements?

To address RQ3 we pre-trained three distinct BERT models, each
leveraging different datasets: (1) descriptions from CWE and the CVE;
(2) the Defect Detection dataset [15] tailored for the Insecure Code
Detection task; and (3) a combination of both datasets. This strat-
egy, particularly the use of BERT’s pre-training phase, addresses the

challenge of detecting inter-domain security requirements in scenarios
where diverse project data for training is scarce. In fact, BERT’s pre-
trained representations capture rich semantic information from large
text corpora, allowing the model to generalize well to diverse tasks
with minimal finetuning. This bridges the gap between requirement
specifications and vulnerability descriptions, paving the way for a ro-
bust inter-domain classifier to advance automated security requirement
identification. In summary, the contributions of this paper are:

1. Benchmarking shallow and deep learning approaches including
ML and fine-tuned BERT for security requirement detection.

2. Investigating combined word embeddings and ML algorithms for
intra-domain security requirement identification.

3. Testing real-world applicability by evaluating inter-domain se-
curity requirement classification.

4. Recognizing labeled cross-domain data scarcity, pre-training
BERT on security databases for contextual knowledge to identify
requirements expressed differently across projects.

5. A publicly accessible replication package [16] is provided, en-
abling researchers to reproduce our findings or to further de-
velop upon our work.

Organization of the paper. Section 2 presents background research
on requirements classification and how security is typically analyzed
in this context. Section 3 details the design of our empirical study
for evaluating BERT-based models. Section 4 presents the quantitative
results and discusses key findings. A discussion of threats to validity is
included in Section 5, while Section 6 concludes the paper.

2. Related work

In this section, we provide an overview of existing approaches in
the literature concerning the classification and detection of security
requirements, contrasting them with our approach to highlight the
advancements in our work.

While Varenov and Gabdrahmanov [17] made strides in classi-
fying security requirements into predefined categories (Confidential-
ity, Integrity, Availability, Accountability, Operational, Access control,
Other), exploiting a dataset containing solely security requirements and
using BERT-based models, achieving an Fl-score of about 78%, their
focus was on multitasking classification rather than the identification
task central to our study. We delve into the challenge of not just
classifying but identifying security requirements, leveraging advanced
BERT-based models for a more nuanced analysis.

Munaiah et al. [12] explored the domain-independent security re-
quirement identification using one-class classification models. While
notable, they primarily focused on using CWE database to build, by
mean of TF-IDF [18], a vector space that served to train the One-SVM
classifier, achieving an average Fl-score of 67% when testing it on
the industrial requirement specifications (ePurse, CPN and GP) that
we used in our experimentation. Our approach, in contrast, aims to
classify security requirements directly from requirement specifications
as first attempt, offering a more direct and applicable solution to
practitioners. In a second moment, we provide a solution to contrast
with this approach, by giving a context to BERT models based on both
code and CWE and CVE descriptions.

Wang et al.’s logistic regression model [19], which integrated
project-related metrics to identify security requirements, introduced a
novel perspective but faced limitations with a maximum F1-score of
60%. In contrast, our approach relies solely on requirement specifi-
cations, expanding its applicability to scenarios where design-related
metrics are not accessible. The tool proposed by Riaz et al. [20] for
identifying security-relevant sentences in natural language require-
ments documents, using a KNN classifier, achieved an F1-score of 80%.
However, it required structured text documents, unlike our approach
which can process requirements in their natural, unstructured form.
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Cleland-Huang et al. [10] introduce an iterative method for train-
ing classifiers to identify non-functional requirements (NFR), tested
through experiments with 15 requirement specifications from DePaul
University MS students and a comprehensive document from Siemens
Logistics and Automotive Organization. Although the classifier does not
detect all NFRs, it supports analysts in identifying NFRs and expedites
the analysis of large documents. Our approach concentrates solely on
security requirements as NFRs, specifically avoiding poorly defined
requirements from non-industrial domains.

Among similar studies, Knauss et al. [8] and Li and Chen [9] also
performed both intra- and inter-domain experiments. Knauss et al. used
a Bayesian classifier for automatic identification, while Li and Chen
emphasized linguistic features and extended ontology. In our study, we
capitalize on datasets from these investigations to perform intra- and
inter-domain experiments, benchmarking results against their findings.

Finally, Mohamad et al. [11] explored the use of a classifier for
security-related requirements, trained on 15 randomly selected, par-
tially pre-labeled requirement documents totaling 3880 requirements.
They conducted cross-project predictions where each specification
served as a distinct group, similar to our RQ2, and evaluated the model
against three United Nations regulations in the automotive sector,
each varying in security relevance. While the findings demonstrate the
viability of training a model across diverse domains, our focus is on
refining techniques rather than relying on large data volumes. Conse-
quently, we compare our results with their study in RQ3, highlighting
differences in technique versus data quantity used in training.

3. Empirical study design

In this section, we outline the empirical study design, starting with
the rationale for formulating the research questions. We then detail the
datasets used for experimentation, the evaluation criteria for predicting
accuracy of the considered approaches, and discuss potential threats to
the study’s validity.

3.1. Research questions

Our study aims to assess the effectiveness of shallow and advanced
techniques for detecting security requirements, particularly by exploit-
ing ML algorithms and BERT-based models, which allow fine-tuning for
different NLP-based tasks, such as sequence classification. We start by
assessing whether shallow ML models can be used for the specific task,
which led to the formulation of the first research question:

RQ1 How effectively can shallow machine learning algorithms,
based on word embeddings, identify security-related
requirements coming from the same domain?

The formulation of this research question aims to understand which
of the possible combinations of WE and ML algorithms presents the best
performances by following the strategy shown in Fig. 1.

We experiment with 5 embedding techniques and 30 ML algorithms,
totaling 150 possible solutions, to find the best combination. The
word-embedding techniques we adopt are TF-IDF, Word2Vec, GloVe,
FastText, and BERT. The choice and experimentation of these tech-
niques are not random, as each technique has its peculiarities and other
studies have used the same ones (e.g., [21]).

TF-IDF [18] is based on statistics of the frequency of words in a
document and their importance concerning the entire corpus. It is char-
acterized by its simplicity and interpretability, being effective for prob-
lems in extracting information from textual documents. Word2Vec [22,
23] is known for capturing semantic relationships between words via
dense word vectors. It is particularly suitable for applications that
require a deeper understanding of word meaning, such as semantic
clustering and similarity analysis. GloVe [24] combines co-occurrence
statistics of words in a corpus with matrix-based optimization. It ef-
fectively captures global relationships between words and retains in-
formation on the semantic structure of the data. FastText [25-27] is

known for its ability to handle subword information, making it suitable
for languages with rich morphology. It is ideal for classifying texts and
searching for similar documents with common roots. BERT [13] is a
transformer-based embedding model that can capture the bidirectional
context of words. It is particularly effective in complex NLP tasks such
as machine translation and text summarization.

We empirically investigate the optimal classifier from the 30 differ-
ent classification algorithms provided by Lazy Predict,' a Python library
streamlining the comparison of numerous models, obviating the need
for manual parameter tuning. The assessment of all these algorithms is
conducted employing the five aforementioned word-embedding tech-
niques. After identifying the most effective combinations (Step 1 in
Fig. 1), our analyses encompass two aspects: the first facet of our in-
vestigation is to optimizing hyperparameters for the selected ML model
(Step 2 in Fig. 1), and the second revolves around implementing ensem-
ble learning techniques leveraging the top three combinations (Step 3
in Fig. 1). The pursuit of optimal hyperparameters is realized through
Grid Search Cross-Validation (GridSearchCV) [28], a well-established
and rigorous method renowned for its exhaustive exploration of the
hyperparameter space. This process is designed to fine-tune the selected
ML model, enhancing its precision and adaptability to the specific task
at hand. In the realm of ensemble learning, we explore stacking [29],
bagging [30], and voting methodologies [31]. It is worth noting that
in this analysis, we employ data coming from a collection of industry
requirements of three different projects: ePurse, CPN, GP. Details about
the datasets can be found in Section 3.2. These datasets have been cho-
sen because previous studies exploited them [8,9], allowing us to carry
out a comparison with existing classification models. In particular, as
in previous investigations, we perform two types of analysis:

(a) when the models are trained and validated on the same set of
requirements (i.e., intra-domain) and

(b) when the models are trained on a collection of requirements
and then validated on a different set of requirements (i.e., inter-
domain).

Thus, with RQ1, we want to understand which of the analyzed
approaches presents the best performance when evaluated on data
coming from the same domain of the training dataset, addressing point
(a). Having three different sets of requirements from Knauss et al. [8]
and Li and Chen [9], we validate the built models on each of these
datasets and their combinations for a total of seven datasets. The seven
combinations are obtained using the three individual datasets (CPN,
ePurse, and GPS), the three combinations obtained using each time two
of the three collections of requirements (CPN & ePurse, CPN & GPS,
and ePurse & GPS), and the combination obtained using all of them
(CPN & ePurse & GPS). We apply a 10-fold cross-validation on each of
the datasets and their combinations, using at each iteration a different
set for training and testing starting from the whole set of requirement
considered, to verify that the obtained results are not the product of
chance (see Section 3.2 for more details).

To address point (b), we formulate the following research question:

RQ2 How effectively can shallow machine learning algorithms,
based on word embeddings, identify security-related
requirements coming from different domains?

To answer RQ2, the WE and ML algorithm combinations are trained
on six datasets. These datasets are formed by combining three sets of re-
quirements collections (CPN, ePurse, and GPS) and three combinations
derived from pairing two of the three requirement collections each time
(CPN & ePurse, CPN & GPS, and ePurse & GPS). The obtained models
are then used to identify the security requirements of the collection
not included in the training set (e.g., the models trained on ePurse are
used to classify the requirements included in CPN and GPS, the models

! The Lagy Predict library: https://github.com/shankarpandala/lazypredict.
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Fig. 1. Procedure employed to address RQ1 and RQ2.

trained on CPN & GPS are used to classify the requirements included
in ePurse), thus performing a hold-out validation. See Section 3.2 for
details regarding the complete list of training and test sets employed.

As in the case of RQ1, we conduct a deeper analysis to identify
the optimal hyperparameters for the leading combination and practical
experiments involving various ensemble learning strategies.

Thus, with RQ2, we want to evaluate the generalizability of the ap-
proaches considered in RQ1. For this reason, the training and test data
must belong to different domains. However, obtaining training datasets
for multiple domains is challenging. Creating such datasets involves
the laborious task of having domain experts classify requirements
into security and non-security categories, which is a time-consuming
process. Consequently, reliance on datasets coming from a particular
domain can restrict the practical applicability in a real-world scenario
for automated security requirement identification.

To address this limitation, we broadened our focus beyond the
problem domain to include solution domains, leading us to consider the
Common Weakness Enumeration (CWE) and Common Vulnerabilities
and Exposures (CVE) as potential training datasets.? CWE provides a
structured catalog of software weakness types, offering a standardized
language for describing security vulnerabilities in architecture, design,
and code. Similarly, CVE is a comprehensive list of documented cy-
bersecurity vulnerabilities, widely used for referencing and tracking
security issues across software and hardware systems.

It is worth noting that software weaknesses can be seen as the
aftermath of unmet security requirements. We consider the language
employed to characterize security requirements and the one used to
delineate weaknesses share commonalities, making it conceivable to
train a inter-domain security requirements classifier using the descrip-
tions of weaknesses and vulnerabilities. Take, for example, a require-
ment in the GPS dataset, such as “When relevant, a Security Domain
must verify the signature of load file data blocks upon request from the
OPEN”. This requirement displays a resemblance to the description
of CWE-347,* which articulates that “The product does not verify, or
incorrectly verifies, the cryptographic signature for data.” (example used
also by Munaiah et al. [12]). The convergence in both language and
content between these two instances strengthens our hypothesis that
an approach capable of identifying security requirements in a domain
agnostic manner is indeed viable. To this end, the following research
question is formulated:

RQ3 How effective can pre-training context in BERT
transformers be on the detection of security-related
requirements?

2 https://cwe.mitre.org/index.html
3 https://cwe.mitre.org/data/definitions/347 . html

We leverage an extensive corpus of textual descriptions as well as
insecure code related to software weaknesses and vulnerabilities to
investigate the feasibility of training a domain-independent security
requirements classifier. We recognize that the descriptions and the
code in CWE and CVE databases contained rich and comprehensive
information about various security-related issues in software.

We initiate the pre-training of a BERT model to harness this valuable
textual data. BERT is an advanced natural language processing model
renowned for its ability to grasp contextual information from extensive
text datasets, enabling effective generalization to various tasks with
minimal fine-tuning. In this case, we pre-train the BERT model us-
ing the textual descriptions from CWE and CVE, and the code from
CodeXGLUE Defect Detection dataset [15], allowing it to learn and
understand the nuanced language used to describe software weaknesses
and vulnerabilities as well the related portions of code. See Section 3.2
for details regarding the descriptions of weaknesses and vulnerabilities.

This pre-training step is crucial in preparing the BERT model to
identify security requirements across diverse domains effectively. The
model is exposed to various security-related codes, languages and
terminology, enabling it to recognize the underlying patterns and as-
sociations between security requirements and software vulnerabilities.

By employing this approach, as shown in Fig. 2, we aim to bridge
the gap between the language used to express security requirements
and the descriptions of known vulnerabilities, ultimately paving the
way for a more robust and domain-independent security requirements
classifier. For this reason, we end with four distinct BERT models:

« BERT ((1) in Fig. 2): The specific text corpus used for pre-
training BERT can vary depending on the variant of BERT and
the objectives of the pre-trained model. The original BERT model,
developed by Google Al, was pre-trained on a combination of the
BooksCorpus dataset (consisting of 11,038 books) and the English
Wikipedia (comprising approximately 2500 million words). In
this study, we utilize the BERT base uncased version, typically
pre-trained on a substantial volume of text data collected from
diverse sources on the web, including books, articles, websites,
and more.

CweCveBERT ((2) in Fig. 2): Derived from the BERT base un-
cased model, we augment the pre-training phase by incorporating
descriptions of CWE and CVE.

CodeBERT ((3) in Fig. 2): CodeBERT [32] is a bimodal pre-
trained model designed to understand and bridge natural lan-
guage (NL) and various programming languages (PL), such as
Python, Java, JavaScript, and others. CodeBERT captures the se-
mantic relationships between natural language and programming
language and generates versatile representations suitable for a
wide range of NL-PL understanding tasks (e.g., natural language
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Table 1
Requirements specifications considered in our empirical study.
Dataset (Abbreviation) Total Security Avg. Words per
Requirements Requirements Requirement

Common Electronic Purse (ePurse) [8,9,11] 124 83 29
Customer Premises Network (CPN) [8,9,11] 141 31 24
Global Platform Specifications (GPS) [8,9,11] 174 63 31
Collection of 12 projects (Traing,,,) [11] 3369 652 25
United Nations regulations (Testp,,,) [11] 362 47 43
PROMISE expanded version (Promise, ) [33] 969 125 18

exp

code search) and generation tasks (e.g., code documentation gen-
eration). CodeBERT was pre-trained using code repositories from
GitHub in six different programming languages. The bimodal data
points in this model consist of pairs of source code and their
corresponding function-level natural language documentation. In
this paper, we employ a version of CodeBERT fine-tuned on the
CodeXGLUE Defect Detection dataset [15] for the Insecure Code
Detection downstream task.

CweCveCodeBERT ((4) in Fig. 2): This model is a combination
of the two previously mentioned BERT models, i.e., CweCveBERT
and CodeBERT. Specifically, we initiate from CodeBERT and ex-
tend the pre-training process to include a text corpus composed
of descriptions from both CWE and CVE.

3.2. Datasets

Table 1 provides an overview of the sets of requirements consid-
ered. The datasets comprises lists of requirements specified for their
respective projects. The sole exception is the United Nations regulations
dataset (Testp,,), which combines three documents from the auto-
motive sector (UN-R155, UN-R156, and UN-R157). These regulations
differ in their level of security relevance. Most of the individual require-
ments consist of only one sentence, while others contain two sentences,
with an average number of words per requirement indicated in the last
column in Table 1. Below is an example extracted from Promise,,,:

“The product shall ensure that it can only be accessed by authorized
users. The product will be able to distinguish between authorized and
unauthorized users in all access attempts”.

The advantages of using these sets of requirements are:

+ different approaches have been evaluated on these sets
(e.g., Knauss et al. [8]; Munaiah et al. [12]; Li and Chen [9];

Mohamad et al. [11]) allowing us to perform a direct comparison
with our proposal;

« the specifications cover different application domains, allowing
to evaluate the generalizability of the trained models;

« the requirements specifications in CPN, ePurse, and GPS come
from industrial environments, and the success of their classifica-
tion can demonstrate the usefulness of our approach in industrial
settings.

To address the challenges in validating machine learning mod-
els, a dataset must be carefully managed, ensuring (i) the use of
distinct data for training and validation, (ii) systematic selection of
training requirements for reproducible and representative results, and
(iif) avoidance of overfitting to prevent models from being limited to
specific training data. Typically, k-fold cross-validation is employed to
mitigate these issues, randomly sorting the dataset into k equal parts,
training the classifier on k - 1 parts, and evaluating its performance on
the remaining part [34-36]. The choice of k is critical: a low value for
k makes the evaluation less complicated and faster, characterized by a
low variance but with the possibility of having more biases. Therefore,
we should determine k experimentally to ensure unbiased results, while
minimizing the complexity of our evaluation. According to Chantree
[35], Knauss et al. [8], and Li and Chen [9], k = 10 is an appropriate
value for this purpose. Indeed, with a value of k larger, the partitions
may become too small with the risk of not containing a security-
relevant requirement. Thus, in our study, we apply a k( = 10 )-fold
cross-validation to assess the performance of the proposed solutions. It
is worth noting that the k-fold cross validation has not been applied
in the experiment for the RQ2 and to assess the BERT-based models
built to answer RQ3 because they require that the test and training
data belong strictly to different domains.
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Table 2
List of datasets used for training and test in each research question.
RQ1 RQ2 RQ3
10-fold cross-validation Training set (Test set) Different Pre-training setup (Fig. 2)
CPN CPN (GPS) Fine-tuned on Trainp,, & CPN & GPS & ePurse
GPS CPN (ePurse) Testpu,
ePurse ePurse (CPN) Promise,
CPN & GPS ePurse (GPS)
GPS & ePurse GPS (ePurse) Fine-tuned on Trainp,,
CPN & ePurse GPS (CPN) CPN
CPN & GPS & ePurse CPN & ePurse (GPS) GPS
CPN & GPS (ePurse) ePurse

GPS & ePurse (CPN)

To systematically explore the hyperparameter space, GridSearchCV,
a technique for hyperparameter tuning in ML, is employed. Grid-
SearchCV automates the process of systematically testing different com-
binations of hyperparameters to find the best set of hyperparameters for
a given model. This approach ensures that the model’s performance is
optimized with respect to the selected hyperparameters. It combines
grid search, which exhaustively explores a predefined set of hyper-
parameter combinations, with cross-validation, which assesses model
performance to avoid overfitting. Grid search with cross-validation
combines these two techniques by performing grid search on each fold
of the cross-validation. For each hyperparameters combination, the
model is trained k times, and the performance metrics are averaged
over the k iterations. The final outcome of grid search with cross-
validation is the combination of hyperparameters that yields the best
performance on the validation data. This approach helps in optimizing
a model’s hyperparameters and ensures that the selected configuration
is less likely to be overfit to a specific dataset.

Taking into account these validation methods, to answer RQ1 and
RQ2, we consider the first 3 sets, i.e., CPN, ePurse and GPS, and
their combinations to train and test the different combinations of word
embedding and ML algorithm (see Table 2). The remaining datasets,
i.e., Trainp,,, Testp,,, and Promise,,,, are useful for evaluating the
BERT-based approaches built to answer RQ3. Trainp,,, have been used
to finetune the different BERT models and Testy,, and Promise,,,
to test them. Before evaluating BERT models we pre-trained them
on the CWE® and CVE® descriptions catalogs. Below, we provide two
examples of descriptions that help identify the displayed requirement
from Promise,,, as security-related:

CWE-ID 203:“The product behaves differently or sends different re-
sponses under different circumstances in a way that is observable to an
unauthorized actor, which exposes security-relevant information about the
state of the product, such as whether a particular operation was successful
or not”.

CVE-2020-0015:“In onCreate of Certlnstaller.java, there is a possible
way to overlay the Certificate Installation dialog by a malicious application.
This could lead to local escalation of privilege with no additional execution
privileges needed. User interaction is needed for exploitation”.

3.3. Evaluation criteria

To assess the accuracy of our solutions, we employ widely used
information retrieval criteria: Accuracy, Precision, Recall, and F1-
score [37,38].

Accuracy It measures the proportion of total correct predictions (both
true positives and true negatives) out of all predictions made
by the model (true positive + true negative + false positive +
false negative).

4 We downloaded it at: https://cwe.mitre.org/data/downloads.html.
5 We downloaded it at: https://www.cve.org/Downloads.

Precision Calculated as true positive / (true positive + false positive), it
indicates the correctness of the predictions provided by the
model.

Recall Calculated as true positive / (true positive + false negative), it
measures the completeness of the predictions provided by
the model.

F1-score Defined as the harmonic mean of Precision and Recall, it
indicates the balance between these two measures. We con-
sider the weighted-averaged Fl-score, calculated by taking
the mean of all per-class Fl-scores while considering each
class’s support.

We use these criteria because they are considered equally important
in a binary classification task. The datasets used in this study enable
the quantification of these criteria, as they include information about
the actual class labels. For our study, the higher Recall could be
considered more important than higher Precision, because stakeholders
may be more interested in a tool that can capture all possible security
requirements rather than focusing on the correctness of predictions [8].
In addition, these criteria allow comparison with previous work in the
literature, leading us to understand and analyze the effectiveness and
importance of our approach. The goal is to try to observe how accurate
the models are in identifying security-related requirements and to catch
their limitations in the above task. As for the evaluation of the achieved
results, to draw conclusions we consider a model characterized by an
F1-score value greater than 0.7 to be good, as other work has also used
this threshold as an index of model goodness [8,34]. Furthermore, to
establish if one model allows obtaining significantly better predictions
than other models, we perform statistical tests aiming at assessing
whether the differences observed by applying the chosen evaluation
criteria (i.e., Accuracy, Precision, Recall, and F1-score) are legitimate or
due to chance [39]. Specifically, we use McNemar’s test to compare the
performances of our prediction models [40,41]. Indeed, Salzberg [40],
Japkowicz and Shah [41] recommend McNemar’s test to compare the
performances of two models because it has a lower probability of error
because it makes fewer assumptions. In particular, given the predictions
of two models, A and B, and truth labels, a contingency table is
calculated to examine the number of cases in which the following
occurs: (i) Both classifiers are correct; (ii) Both classifiers are incorrect;
(iii) A is correct and B is incorrect; (iv) B is correct and A is incorrect.
Through this table, it is possible to estimate the probability that A is
better than B at least as many times as observed in the experiment [40].

To compare the performance of our classifiers, the following null
hypothesis is considered:

Hny: The considered BERT-based models are equally accurate in identi-
fying security requirements.

McNemar's test allows us to test the null hypothesis by comparing
each pair of models under the same null hypothesis. As usual, for the
performed statistical tests we consider accepting a probability of 5% of
committing a Type-I-Error [42], thus a p-value of 0.05 as a threshold
of “significance”, i.e., a p-value less than 0.05 implies that the results
obtained are unlikely to be due to chance, allowing the null hypothesis
to be rejected.
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Table 3

Results obtained by the built combinations of word-embedder and ML models on the different datasets, for the inter-domain security requirements.
NuSVC = Nu-Support Vector Classification; LR = Linear Regression; RidgeCV = Ridge regression with built-in Cross-Validation; LGBM = Light Gradient Boosting Machine; XGB =
eXtreme Gradient Boosting; ET = Extra Trees; SVC = Support Vector Classification.

Word2Vec BERT TF-IDF FastText GloVe
Model Acc F1 Model Acc F1 Model Ace F1 Maodel Ace F1 Model Acc F1
NuSVvC 0.84 0.84 LGEM 0.70 0.68 ET 0.82 0.82 NuSVC 0.81 0.80 NuSvVC 0.83 0.82
LR 0.82 0.83 XGB 0.68 0.67 NusvC 0.81 0.81 SvC 0.81 0.79 SVC 0.81 0.80
RidgeCV 0.82 0.82 ET 0.69 0.67 RidgeCV 0.81 0.80 RidgeCV 0.78 0.78 RidgeCV 0.80 0.80
It is important to note that in our study, to answer RQ3 we compare Table 4
three models.® thus to verify if one model can provide signiﬁcantly Results from GridSearchCV on the combination Word2Vec and NuSVC.
»
better predictions than the other two models, we apply two tests. As a Dataset Precision Recall Fl-score
consequence, we apply a Bonferroni correction to classify the p-values CPN 0.86 0.85 0.84
as significant (i.e., to reject the null hypothesis and positively answer G;’S g':g g'gi g‘g:
. . . elurse . . .
our research questions) [43,44]. Since the number of tests is two, the CPN & GPS 0.83 0.81 0.81
correction applied is: 0.05/2 = 0.025 in the case of RQ3. GPS & ePurse 0.79 0.75 0.74
CPN & ePurse 0.73 0.72 0.71
4. Results and discussion CPN & GPS & ePurse 0.80 0.78 0.78
Overall 0.81 0.79 0.78

In this section, we present the outcomes of our investigation and
provide the answer to each research question posed.

4.1. RQ1 How effectively can shallow machine learning algorithms, based

on word embeddings, identify security-related requirements coming from the
same domain?

Table 3 shows the overall results (in terms of Accuracy and F1-
score, indicated as Acc and F1 in the table, respectively) obtained by
the built combinations of WE and ML models on the different datasets,
i.e., all the possible combinations of the three requirement specifica-
tions considered (CPN, GPS, ePurse, CPN & GPS, GPS & ePurse, CPN &
ePurse, CPN & GPS & ePurse), to answer RQ1. We apply 10-fold cross-
validation, and then we calculate the average Accuracy and F1-score to
catch the most promising combination.Note that we consider only these
2 metrics because in the first part of the assessment we are interested
in the general performance of the models, that can be resumed in
Accuracy and F1-Score, while specific metrics like Recall or Precision
will be considered in the later steps. Based on our result, the best
combination is Word2Vec as word embedding technique and NuSVC
as ML algorithm, reaching 0.84 in terms of Accuracy and F1-Score.
Since the first part of the experiment only gives an overview of the
possible best combination, we carried out more in-depth experiments
both via GridSearchCV, to identify the best hyperparameters for the best
combination identified, i.e. Word2Vec and NuSVC, and via Ensemble
Learning techniques, with the aim of filling in the model’s deficiencies
on certain datasets by exploiting the learning of other algorithms.
Table 4 presents the results obtained through GridSearchCV.

In this experiment, the nu parameter is tested at five levels: 0.1, 0.3,
0.5, 0.7, and 0.9, which determines the upper bound on the fraction of
margin errors and the lower bound of the fraction of support vectors.
Four types of kernels are explored: linear, polynomial, radial basis
function (rbf), and sigmoid. For polynomial kernels, three degrees are
considered: 2, 3, and 4. The gamma parameter, which defines the
influence of a single training example, is set to either scale or auto,
with additional specific values of 0.001, 0.01, 0.1, and 1.0, providing a
range of options for fine-tuning the model’s complexity and capability
to handle data of varying scales and distributions. Notably, the aver-
age outcomes are generally lower than those achieved in the initial
experiment, recording a 0.78 in terms of F1l-score.

® Note that we implemented four BERT models but we “discarded” CweCve-
BERT, i.e., the one pre-trained on solely CWE and CVE descriptions catalogs,
because in the first round of evaluation is the one that performed the worst,
thus we excluded it in finding the statistical significant difference.

Table 5
Results from Ensemble on the combination Word2Vec and NuSVC, Logistic Regression,
and Ridge Classifier CV.

Dataset Strategy Precision Recall Fl-score
Hard Voting 0.73 0.83 0.76
CPN Hard Bagging 0.78 0.83 0.78
Stacking 0.92 0.90 0.90
Hard Voting 0.84 0.81 0.81
GPS Hard Bagging 0.79 0.78 0.77
Stacking 0.87 0.83 0.84
Hard Voting 0.77 0.73 0.69
ePurse Hard Bagging 0.69 0.71 0.66
Stacking 0.78 0.76 0.75
Hard Voting 0.83 0.83 0.82
CPN & GPS Hard Bagging 0.83 0.83 0.82
Stacking 0.87 0.85 0.86
Hard Voting 0.81 0.80 0.77
GPS & ePurse Hard Bagging 0.83 0.82 0.82
Stacking 0.82 0.77 0.77
Hard Voting 0.79 0.78 0.77
CPN & ePurse Hard Bagging 0.79 0.77 0.76
Stacking 0.82 0.80 0.80
Hard Voting 0.84 0.83 0.83
CPN & GPS & ePurse Hard Bagging 0.83 0.82 0.81
Stacking 0.83 0.81 0.82
Hard Voting 0.80 0.80 0.78
Overall Hard Bagging 0.82 0.80 0.79
Stacking 0.84 0.82 0.82

The results in Table 5 demonstrate the performance of ensemble
learning strategies (Hard Voting, Hard Bagging, and Stacking) in de-
tecting security requirements for the various datasets combinations.
The performance varies across different datasets, even though the
Stacking strategy consistently outperforms other strategies in terms of
F1-score, demonstrating higher Precision and Recall compared to the
other strategies.

4.1.1. Discussion

The experiment carried above reveals that the most promising ML
algorithm is the NuSVC, independently from the WE technique, reach-
ing over 0.80 in Accuracy and F1-score with 3 WE out of 5, highlighting
its potential in this task. However, Lazy Predict is a valuable tool for
quick model evaluation and selection, especially in the early stages of
an ML project. This means it should be viewed as a starting point, and
more in-depth, customized modeling and feature engineering are often
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Table 6

Results in terms of Precision, Recall, and Fl-score achieved with Ensemble on the combination Word2Vec and NuSVC, Logistic Regression, and Ridge Classifier CV, compared with

the results obtained by Li and Chen [9].

Dataset Stacking Li and Chen [9]
Precision Recall Fl-score Precision Recall Fl-score

CPN 0.92 0.90 0.90 0.78 0.71 0.74
GPS 0.87 0.83 0.84 0.76 0.70 0.73
ePurse 0.78 0.76 0.75 0.90 0.80 0.85
CPN & GPS 0.87 0.85 0.86 0.72 0.72 0.72
GPS & ePurse 0.82 0.77 0.77 0.85 0.80 0.83
CPN & ePurse 0.82 0.80 0.80 0.82 0.76 0.79
CPN & GPS & ePurse 0.83 0.81 0.82 0.80 0.80 0.80
Overall 0.84 0.82 0.82 0.80 0.76 0.78

required for optimal performance on real-world datasets. Indeed, we
can already observe a substantial difference in the results we get into
the GridSearchCV experiment, which leads our combination of W2V
and NuSVC to earn an average mark of 0.78 in terms of F1-score.

This difference arises because, in the first experiment, the model
operates with default hyperparameters. In contrast, GridSearchCV ex-
plores a predefined set of hyperparameter combinations, which, if
not well-defined or excessively broad, may include suboptimal choices
affecting model performance. Moreover, the model’s performance can
vary due to the specific data it is trained on, and GridSearchCV, by de-
sign, tests the model with diverse data subsets during cross-validation.
Consequently, one set of hyperparameters may excel on one fold while
another works better on a different one, leading to inconsistent results.

The surprising performance of the Word2Vec and NuSVC combina-
tion observed in the Lazy Predict library, compared to the traditional
GridSearchCV implementation, can be attributed to multiple factors.
One explanation is that Lazy Predict provides an efficient, automated
method for evaluating a broad range of ML models with diverse hyper-
parameters without the need for extensive manual tuning. This “lazy”
approach might serendipitously discover an optimal combination that
might not be immediately evident in a structured grid search. Addi-
tionally, Word2Vec embeddings capture semantic information, while
NuSVC, equipped with a nu-parameter, can effectively handle data with
intricate decision boundaries.

The Lazy Predict library could have identified an ideal configuration
during its automated model selection process that aligns well with
the unique characteristics of Word2Vec embeddings. Nonetheless, it is
crucial to acknowledge that the specific dataset may influence the ob-
served behavior, and results should be interpreted judiciously. Indeed,
by looking at Table 4, the performances are lower whenever we intro-
duce ePurse requirements, leading the W2V and NuSVC combination
never to overcome the 0.8 in Fl-score.

For this reason, we search for an ensemble approach of ML al-
gorithms, intending to fill the difficulties of NuSVC to catch security
requirements from a particular domain correctly. Of the tested strate-
gies, Stacking is the one that outperforms the others in Precision,
Recall, and F1-Score. Even though we do not improve the performance
on the specific ePurse dataset, where performance is even weaker than
the Grid Search approach, on the 3 combinations of datasets including
ePurse, i.e., GPS & ePurse, CPN & ePurse, and CPN & GPS & ePurse, the
performance improved of 0.3, 0.9, and 0.4, respectively. In summary,
the results achieved allow to answer our first RQ as follow:

( )
Stacking is a powerful ensemble learning strategy for intra-
domain security requirements detection, offering a bal-
anced trade-off between Precision and Recall. By exploiting
Word2Vec, the solution based on stacking NuSVC, Logistic
Regression, and Ridge Classifier CV allows to obtain 0.82 in
terms of Fl-score, with a peak of 0.84 in terms of Precision.

. g

Table 6 compares the performance of two different approaches: one
approach is an ensemble method combining Word2Vec with NuSVC,

Logistic Regression, and Ridge Classifier CV (referred to as “Stacking”
in the table). The other is a method reported by Li and Chen [9], as
referenced in the table. We select this as the baseline for comparison be-
cause the authors achieved the best performance in identifying security
requirements in these experiments.

Considering the overall performances, the ensemble approach
(“Stacking”) outperforms the method by Li et al. across all three
metrics. The ensemble has an overall Precision of 0.84, Recall of 0.82,
and F1-score of 0.82, which are higher than Li et al.’s Precision of 0.80,
Recall of 0.76, and F1-score of 0.78.

By looking at the performance by datasets, the ensemble method
generally achieves better Precision, Recall, and Fl-scores than the
method by Li et al. that performs better on the ePurse and GPS & ePurse
datasets. For the ePurse dataset, Li et al.’s method has a Precision of
0.90, which is substantially higher than the ensemble’s 0.78. Similarly,
the Recall is better by 0.04, and the Fl-score is better by 0.10. In
terms of standard deviation, Li et al.’s method shows less variability in
performance across different datasets. For example, its F1-scores range
from 0.73 to 0.85. In contrast, the ensemble method varies more, with
Fl-scores ranging from 0.75 to 0.90, indicating that it may be more
sensitive to the characteristics of the specific datasets.

In summary, the ensemble method generally shows superior results,
especially in overall metrics, while the method by Li et al. outperforms
the ensemble when using the ePurse dataset or its combination with
GPS, suggesting that the ontology-based solution still provides better
performance in singular cases.

4.2. RQ2 How effectively can shallow machine learning algorithms, based
on word embeddings, identify security-related requirements coming from
different domains?

Table 7 displays the best results achieved by the 150 combinations
of WE and ML models in the inter-domain experiment to address
RQ2. Word2Vec (W2V) as the WE technique and Passive Aggressive
Classifier (PAC) as the ML algorithm delivered the highest performance,
achieving an Accuracy and F1-Score of 0.66. Then, we conduct detailed
experiments through GridSearchCV to identify the optimal hyperparam-
eters for the top combination, i.e., Word2Vec and PAC, and we explore
ensemble learning techniques to address specific dataset challenges by
leveraging the knowledge of other combination.

Table 8 displays the results obtained from GridSearchCV for the
Word2Vec and passive aggressive combination. In our experiment, the
parameter grid for model tuning consists of several hyperparameters
aimed at optimizing the performance of PAC. The regularization pa-
rameter C is evaluated at three levels: 0.1, 1.0, and 10.0, to adjust
the strength of regularization and prevent overfitting. The maximum
number of iterations to run the optimization algorithm is set at 100,
500, and 1000 to control computational intensity and convergence.
The tolerance for stopping criteria is tested at three fine granularities:
0.001, 0.0001, and 0.00001, to determine the precision of the solution.
Three fractions of the training data, 0.1, 0.2, and 0.3, are considered
for validation to aid early stopping, which helps prevent overfitting by
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Table 7

Results obtained by the built combinations of word-embedder and ML models on the different datasets, for the intra-domain security requirements. PAC = Passive Aggressive
Classifier; LSVC = Linear S5VC; LP = Label Propagation; LS = Label Spreading; LDA = Linear Discriminant Analysis; QDA = Quadratic Discriminant Analysis.

Word2Vec BERT TF-IDF FastText GloVe
Model Ace F1 Model Ace F1 Model Acc F1 Model Ace F1 Model Acc F1
PAC 0.66 0.66 LP 0.62 0.60 LDA 0.52 0.52 Perceptron 0.57 0.56 LR 0.61 0.60
Perceptron 0.65 0.65 LS 0.62 0.60 QDA 0.55 0.52 PAC 0.56 0.56 PAC 0.59 0.60
LSVC 0.65 0.65 Bagging 0.54 0.54 Ridge 0.51 0.51 LsSVC 0.56 0.55 Perceptron 0.59 0.60
Table 8 4.2.1. Discussion
Results from GridSearchCV on the combination Word2Vec and PAC. The results show that Word2Vec paired with the PAC outperforms
Train set (Test set) Precision Recall Fl-score other combinations, achieving the highest accuracy and Fl-score of
CPN (GPS) 0.72 0.72 0.70 0.66. Other embeddings such as BERT embeddings, which are expected
S:frsier(’;f;; g'; g:‘l‘ g‘gg to be strong given their deep contextual representation, do not out-
ePurse (GPS) 077 0.51 0.45 perlfon.n Word2Vec when used with the models in the experiment,
GPS (ePurse) 0.72 0.73 0.71 achieving an Accuracy and Fl-score up to 0.62 only. The FastText and
GPS (CPN) 0.81 0.63 0.66 GloVe embeddings show comparatively lower performance in combi-
CPN & ePurse (GPS; 0.74 0.44 0.34 nation with the tested ML models. This suggests that for the specific
CPN & GPS (ePurse 0.71 0.60 0.61 . e . . .
GPS & ePurse (CPN) 0.76 .71 073 task of 1der1t1fymg secunty-relatec! requirements, the.se t.embedd.mg.s
overall 073 o064 064 are less effective than Word2Vec in the tested combinations. Tradi-
vera ’ ’ . tional frequency-based methods like TF-IDF lag behind more sophis-
ticated embeddings, suggesting that the complexity of security-related
Table 9 language requires more nuanced semantic representations.
Results from Ensemble on the combination Word2Vec and PAC, Linear SVC, and Linear models like PAC Perceptron. and LSVC are notable for their
£l el
Perceptron. robust performance across different embeddings, potentially indicating
Train set (Test set) Strategy Precision Recall Fl-score . . . .
the presence of linearly separable features in the security domain.
CPN (GPS) Hard Voting 0.67 0.68 0.61 From Table 8, which presents the results from a GridSearchCV
Stacking 0.71 0.68 0.61 . . . .
- experiment using Word2Vec embeddings with a PAC, we can observe
CPN (ePurse) Hard Voting 0.68 0.43 0.37 varying levels of generalization capability when models trained on
Stacking 0.44 0.33 0.19 . .
- one dataset are tested on another. For instance, the model trained on
ePurse (CPN) ;l;;ii:otmg g'x g';? g‘gg CPN and tested on GPS performs reasonably well with an F1-score of
- ¢ ' - - 0.70, while the same model tested on ePurse drops significantly in
Hard Voting 0.76 0.65 0.55 .
ePurse (GPS) Stacking 0.64 0.53 0.49 performance, \:Vlfh an Fl-sco.re of 0.39.
Models trained on combined datasets (e.g., CPN & ePurse, CPN &
GPS (ePurse) Hard Voting 0.71 0.62 0.63 GPS) do not necessarily outperform those trained on single datasets
Stacking 0.69 0.70 0.69 artly outp 1 g
- when tested on a third dataset. For example, the combination of CPN &
GPS (CPN) Hard Voting 080 i o Purse tested on GPS sh F1 £ 0.34, which is lower than th
Stacking 0.80 077 0.78 ePurse tested on shows an F1-score of 0.34, which is lower than the
<o & ePuree (659 Hard Voting 077 077 077 su}gle dataset scenario of CPN (GPS}.Wlt.h an Fl-score of D..?O. Consid-
Stacking 0.41 0.64 0.50 ering all the (:‘ases, the o.veTall. Precision is 0.73, the Recall is 0.64, and
Hard Voting 074 053 052 the Fl-score is 0.64. This 1n.d1|:ates th.at the approach has a modf.:r.ate
CPN & GPS (ePurse) Stacking 0.74 0.52 0.51 level of accuracy and a relatively consistent balance between Precision
Hard Voting 0.79 0.63 0.66 and Recall.. However, the. overall F 1-.score points Fo limitations in t’r.le
GPS & ePurse (CPN) Stacking 0.60 0.48 0.53 model’s ability to generalize across different domains. Notably, certain
" Hard Voting 072 0.60 0.60 dataset .palfs ]_Lke.GPS (ePurse) and GPS & ePurse {CPD.I} exh.}blt. belfter
Over Stacking 0.61 0.56 0.56 generalization, with F1-scores of 0.71 and 0.73, respectively, indicating

halting training when validation scores do not improve. Two types of
loss functions, hinge and squared hinge, are used to see their impact
on the learning algorithm. Finally, the grid includes three values for
n_iter_no_change: 5, 10, and 20, to specify the number of consecutive
iterations without improvement after which training will stop, optimiz-
ing computational resources and potentially improving generalization.
Even though the performance are lower with respect to the first ex-
periment (the same happen for RQ1), the designed combination still
present interesting results, achieving 0.64 in terms of F1-score.
Results in Table 9 demonstrate the performance of ensemble learn-
ing strategies (Hard Voting and Stacking) in this task. We do not
evaluate the hard bagging because it is not possible to set up it
with PAC and Perceptron, since these ML solutions do not provide a
method to predict probabilities, affecting their adaptability in more
complex ensemble scenarios that might require such functionality. We
can observe that the performance varies across datasets, with Hard
Voting outperforming the other strategies reaching 0.72 in Precision,
but presenting lower performances in terms of Recall and F1-score.

shared or similar characteristics between these domains that the models
are able to latch onto. The best individual performance comes from
the model trained on GPS & ePurse and tested on CPN, with Precision,
Recall, and Fl-score of 0.76, 0.71, and 0.73, respectively. This could
imply that GPS domain contains features that are more universally
applicable or that the CPN test set has characteristics that are easier
to predict.

Furthermore, in Table 9 we look at the performance of ensemble
techniques using a combination of Word2Vec with PAC, Linear SVC,
and Perceptron. The combination of CPN for training and GPS for
testing shows similar Fl-scores for both Hard Voting and Stacking
strategies, even though Stacking has a slightly higher Precision but
equal Recall. For CPN (ePurse), Hard Voting substantially outperforms
Stacking on all metrics. Stacking’s F1-score of 0.19 suggests significant
issues with generalizing from CPN to ePurse. ePurse (CPN) results are
notably poor for the Stacking strategy, with precision falling to 0.04,
indicating that the Stacking model is particularly challenged when
applying ePurse-trained models to the CPN domain. The ePurse (GPS)
and GPS (ePurse) combinations also reflect better performance with
Hard Voting, with a notable drop in F1-score for Stacking when ePurse
is the training set. A notable result is the GPS (CPN) combination,
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Table 10

Results in terms of Precision, Recall, and Fl-score achieved with GridSearchCV on the
combination Word2Vec and PAC compared with the results obtained by Li and Chen
[9].

Dataset GridSearchCV Li and Chen [9]

W2V & PAC

Precision Recall Fl-score Precision Recall Fl-score
CPN (GPS) 0.72 072 0.70 0.57 0.56 0.57
CPN (ePurse) 0.71 0.44 0.39 0.67 0.60 0.63
ePurse (CPN) 0.66 0.61 0.63 0.98 0.49 0.66
ePurse (GPS) 0.77 0.51 0.46 0.85 0.17 0.29
GPS (ePurse) 0.72 0.73 0.71 0.97 0.76 0.85
GPS (CPN) 0.81 0.63 0.66 0.66 0.76 0.70
CPN & ePurse (GPS) 0.74 0.44 0.34 0.54 0.48 0.50
CPN & GPS (ePurse) 0.71 0.60 0.61 0.57 0.71 0.63
GPS & ePurse (CPN) 0.76 0.71 0.73 0.98 0.73 0.84
Overall 0.73 0.64 0.64 0.75 0.58 0.63

where Stacking equals Hard Voting in Precision and outperforms in
Recall and F1-score. When combining CPN and ePurse as a training
set for the GPS test set, Hard Voting is significantly more effective than
Stacking, reflected by a Fl-score difference of 0.27. For the combined
training sets (CPN & GPS for ePurse, and GPS & ePurse for CPN),
Hard Voting consistently outperforms Stacking in terms of Fl-score.
On aggregate, Hard Voting has higher Precision, Recall, and F1-score
than Stacking, with 0.72, 0.60, and 0.60 respectively, compared to
0.61, 0.56, and 0.56 for Stacking. This suggests that, in general, Hard
Voting is a more reliable ensemble strategy for cross-domain security
requirement identification and that there are significant challenges
when models trained on one dataset are tested on another, particularly
with the Stacking strategy. This might indicate that the features or
patterns learned are not sufficiently universal or are too specific to the
training domain.

The data from Tables 8 and 9 show that performance significantly
fluctuates when models are applied to domains they were not trained
on, indicating challenges in generalizability. Ensemble methods, in-
cluding Hard Voting and Stacking, do not consistently outperform the
individual classifiers. In particular, Stacking and Hard Voting often
result in lower overall performance metrics compared to 0.64 from
the single classifier approach. The composition of the training set
plays a critical role in the effectiveness of the model on the test
set, yet the addition of multiple domains into the training set does
not guarantee improved results. For example, models trained on CPN
& ePurse and tested on GPS show a dip in Fl-score when using a
stacking ensemble approach. In conclusion, while there are instances
where the models trained on one domain can reasonably perform
in another, the overall results suggest that WE-based shallow ML al-
gorithms struggle with cross-domain identification of security-related
requirements, as reflected by the variability and generally moderate to
low F1-scores across different domain combinations. Ensemble methods
do not always result in performance improvements and may require
careful tuning to the specific characteristics of the combined domains
to optimize results. In summary, the results achieved allow to answer
our second RQ as follow:

Optimizing the hyperparameters for the Word2Vec and Pas-
sive Aggressive classifier combination is the most effective
approach for detecting inter-domain security requirements,
striking a peak of 0.73 in Precision and holding a 0.64 as
Recall and F1-score.

Table 10 compares the performance using GridSearchCV with
Word2Vec and PAC (W2V & PAC) against the results obtained by Li
and Chen [9]. W2V & PAC shows stronger performance in terms of
Precision in most dataset combinations compared to Li et al.’s method.

Table 11
Results from different pre-training setups of BERT to detect security requirements.

Model Test set Precision Recall Fl-score
BERT Test ., 0.62 0.79 0.69
Promise,,, 0.69 0.71 0.70
Testy,, 0.44 0.68 0.53
CweCveBERT o
Promise,,, 0.69 0.56 0.62
Test 0.59 0.72 0.65
CodeBERT Date
Promise, , 0.75 0.76 0.76
Testy,, 0.50 0.72 0.59
CweCveCodeBERT Promise 0.69 0.82 075

exp

This is particularly evident in CPN (GPS), CPN (ePurse), and CPN
& ePurse (GPS). In terms of Recall and Fl-score, Li et al.’s method
outperforms W2V & PAC in several combinations, such as CPN (ePurse),
ePurse (CPN), GPS (ePurse), and CPN & GPS (ePurse). This suggests that
while the method W2V & PAC may be more precise in its predictions,
Li et al.’s method might be better at capturing relevant cases (higher
Recall). Nevertheless, both methods exhibit variability across different
dataset combinations. The method W2V & PAC generally maintains a
more balanced trade-off between Precision and Recall across different
dataset combinations, as indicated by its overall performance metrics.
Notably, the method W2V & PAC has an overall precision of 0.73 and
Fl-score of 0.64, which is comparable to the Fl-score of Li et al.s
method (0.63).

However, Li et al.’s method has a slightly higher overall Precision
(0.75) but lower Recall (0.58), that is in contrast with the analysis
reported before, in which our combination seems to have a better
Precision (5 case out of 9) but worse Recall (6 case out of 9) when
compared with Li and Chen [9].

In conclusion, although the W2V & PAC method demonstrates
strong Precision in many cases, Li et al.’s method occasionally surpasses
it in Recall and F1-score. This highlights the complexity and context-
dependent nature of requirements, influencing the selection of the most
suitable approach for inter-domain identification of security-related
requirements, despite the overall results favoring W2V & PAC.

4.3. RQ3 How effective can pre-training context in BERT transformers be
on the detection of security-related requirements?

Table 11 presents the results from different pre-training setups
of BERT models to detect security requirements. The results include
Precision, Recall, and F1-score for different models trained on specific
datasets and tested on both Testy,, and the Promise,,, dataset. The
models evaluated are BERT, CweCveBERT, CodeBERT, and CweCve-
CodeBERT, already detailed in Section 3.1.

For BERT, testing on the Promise,,, dataset yields similar results
in terms of Precision, Recall, and Fl-score compared to the results
on Test;, . dataset. In comparison, CweCveCodeBERT and CodeBERT
exhibit strong performance when tested on Promise,,,, but lower on
Testp,,- Table 12 presents the inference performances of pre-trained
BERT models on industrial specifications. The models evaluated are
BERT, CodeBERT, and CweCveCodeBERT, and their performance met-
rics include Precision, Recall, and Fl-score for various test sets (CPN,
ePurse, GPS, and average across all sets).

CweCveCodeBERT and CodeBERT consistently outperform BERT on
all test sets out of GPS, achieving higher Precision, Recall, and F1-score.
The average performance across all test sets is best for CweCveCode-
BERT, even though there is not that big difference with respect to
CodeBERT. Table 13 presents the results of the McNemar test compar-
ing the performance of BERT, CodeBERT, and CweCveCodeBERT on the
CPN, ePurse, and GPS datasets.

In the comparison between BERT and CodeBERT, CweCveCode-
BERT shows a significant improvement on the CPN and ePurse dataset
with a very low p-value, indicating its superior performance. As ex-
pected, for the GPS dataset, CweCveCodeBERT performs on par with
CodeBERT, suggesting that both models are effective in this context.
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Table 12
Inference performances of pre-trained BERT models on the industrial specifications.

Test set BERT CodeBERT CweCveCodeBERT
Precision Recall Fl-score Precision Recall Fl-score Precision Recall F1-score
CPN 0.76 0.77 0.76 0.78 0.78 0.78 0.80 0.78 0.79
ePurse 0.81 0.53 0.50 0.82 0.61 0.61 0.82 0.62 0.62
GPS 0.79 0.76 0.76 0.78 0.76 0.76 0.79 0.76 0.76
Average 0.79 0.69 0.67 0.79 0.72 0.72 0.80 0.72 072
Table 13 )
McNemar test results. The introduction of CodeBERT and CweCveCodeBERT, with
Dataset BERT BERT CodeBERT their unique pretraining on code and/or security descriptions,
vs vs vs showcase the models’s superior performance and domain inde-
CodeBERT CweCveCodeBERT CweCveCodeBERT pendence, marking, in the case of CweCveCodeBERT, a signifi-
CPN 0.228 0.006 0.096 cant advancement in identifying security-related requirements
ePurse 0.034 0.010 1 when compared to the standard BERT model.
GPS 0.724 1 0.683

4.3.1. Discussion

Our analysis reveal that standard BERT demonstrated robust per-
formance, achieving the highest F1-score of 0.69 on Train,,, (Test,.)
and maintaining a similar F1-score of 0.70 on Promise,,,. This consis-
tency suggests that BERT possesses a commendable ability to generalize
across diverse contexts. CweCveBERT, tailored for CWE and CVE data,
exhibited a lower Fl-score of 0.53 on Test , slightly improving to
0.62 on Promise,,,, implying a potential limitation in its adaptability to
varying data domains. CodeBERT, with its emphasis on code-centered
pre-training, shows moderate performance on Testp,, (Fl-score of
0.65) but excellent on Promise,, » with an Fl-score of 0.76.

This superior performance underlines the relevance of its pre-
training context for the Promise,,, dataset. CweCveCodeBERT, amal-
gamating features of both CWE/CVE and code-related data, shows
balanced efficacy across Testp,, and Promise,,,, reaching an F1-score
of 0.75 on the latter. This indicates that hybrid pre-training approach
can yield models with broader applicability for security detection.

Following these findings, we extended our examination to the in-
ference capabilities of the top-performing BERT models (BERT, Code-
BERT, and CweCveCodeBERT) across diverse industrial datasets (CPN,
ePurse, GPS), as presented in Table 12. CweCveCodeBERT consistently
outperformed the others, especially in Precision and Fl-score, across
all datasets. Its superior performance, particularly on the CPN dataset,
suggests an effective alignment of its pre-training context with the
dataset’s characteristics. However, a noticeable decrease in Recall was
observed across all models on the ePurse dataset, implying a potential
challenge in capturing all relevant cases. The GPS dataset saw similar
performance levels across all models, indicating a uniform handling of
the dataset’s features by the models. While CweCveCodeBERT slightly
led in overall metrics, the marginal difference compared to CodeBERT
and BERT indicates a general effectiveness of all three models for these
industrial specifications.

To rigorously assess the statistical significance of the performance
differences among these models, we applied the McNemar test with a
Bonferroni correction, as shown in Table 13. This correction was crucial
to mitigate Type I errors due to multiple comparisons. The test results
suggest significant differences between BERT and CweCveCodeBERT
on the CPN and ePurse datasets, underscoring CweCveCodeBERT’s
superior performance. However, no statistically significant differences
can be observed between CodeBERT and CweCveCodeBERT across the
datasets, suggesting comparable effectiveness. The significant differ-
ence between BERT and CodeBERT on ePurse, with a p-value of 0.034,
calls for cautious interpretation due to its proximity to the adjusted
threshold.

In summary, the results achieved allow to answer RQ3 as follow:

Table 14 compares the performance of CweCveCodeBERT with two
other models from previous researches (Mohamad's approach using TF-
IDF, SMOTE, and Random Forest, and Munaiah’s approach using a
One-Class SVM trained on CWE descriptions) in terms of Precision, Re-
call, and F1-score across various datasets. CweCveCodeBERT generally
shows the highest average Precision and F1l-score across all datasets,
indicating its strong ability to correctly identify and confirm relevant
cases. However, it has a slightly lower average Recall compared to
Mohamad’s approach, suggesting it may miss some relevant cases that
Mohamad’s model catches.

In particular, on the CPN dataset, CweCveCodeBERT outperforms
the other models in terms of Precision and Fl-score, but Munaiah’s
model has a higher Recall. For the ePurse dataset, Mohamad’s ap-
proach shows significantly better performance, suggesting that for this
particular dataset, their method might be more effective. On the GPS
dataset, CweCveCodeBERT leads in terms of Precision and Fl-score,
while presenting a lower Recall compared to Mohamad’s solution.
Munaiah’s One-Class SVM model shows moderate performance across
all metrics. It appears to be more balanced but does not excel in any
specific area compared to the other models.

Clearly, implementing CweCveCodeBERT may require more compu-
tational resources and expertise in BERT models and NLP, but it offers
a high degree of Precision and overall Fl-score, making it a strong
candidate for practical applications where accuracy is paramount. Mo-
hamad’s approach, while less precise, might be easier to implement due
to the traditional ML pipeline involving TF-IDF and Random Forest.

It could be suitable for scenarios where maximizing Recall is more
important, but this implies the availability of numerous requirements to
obtain the importance of security-related terms with TF-IDF. Munaiah's
One-Class SVM approach might offer a simpler implementation with
moderate performance, potentially serving well in scenarios where a
balance between precision and recall is needed.

Ultimately, CweCveCodeBERT’s robust performance across diverse
datasets underscores its suitability as an inter-domain model. Its ca-
pacity to adapt to various contexts while maintaining high Precision
and F1-scores highlights its versatility, making it an effective tool for
detecting security-related requirements without dependence on specific
application domains.

4.4. Implications for practitioners and researchers

As we delve into the intricacies of our research findings, it becomes
increasingly evident that the realm of security requirement detection in
software engineering is multifaceted, with varying approaches suited to
different scenarios and resource availabilities.

In addressing RQ1, our investigation sheds light on the applica-
bility and effectiveness of ensemble methods for engineers working
within established domains. These methods, known for their minimal
resource and effort demands, exhibit a notable capability in identifying
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Table 14

Results in terms of Precision, Recall, and Fl-score achieved with CweCveCodeBERT compared with the results obtained by Mohamad et al. [11] and Munaiah et al. [12].

Dataset CweCveCodeBERT Mohamad et al. [11] Munaiah et al. [12]

Precision Recall Fl-score Precision Recall Fl-score Precision Recall Fl-score
CPN 0.80 0.78 0.79 0.53 0.71 0.61 0.73 0.80 0.74
ePurse 0.82 0.62 0.62 0.95 0.68 0.79 0.61 0.65 0.61
GPS 0.79 0.76 0.76 0.63 0.81 0.71 0.68 0.67 0.68
Average 0.80 0.72 0.72 0.70 073 0.70 0.67 0.71 0.68

whether new requirements in ongoing projects pertain to security,
offering a streamlined, resource efficient approach for projects with
well defined security requirements, allowing for swift and effective
classification within known parameters. For researchers, the success
of embedding techniques such as Word2Vec and GloVe in recognizing
security requirements suggests the need for further investigation into
which features of these embeddings most contribute to classification
accuracy. Additionally, studying dataset characteristics that influence
model performance could lead to the development of more robust
and adaptable models. For practitioners, the effective combinations of
embedding techniques and ML algorithms identified can be directly
applied in development environments to automate security require-
ment identification, thus saving time and reducing errors in manual
processes. This approach allows practitioners to tailor ML methods to
the specific characteristics of their project’s domain, enhancing the
precision of requirement detection and integrating these ML techniques
into tools to maintain high security in software projects.

Conversely, RQ2 findings reveal a contrasting landscape. Here,
practitioners tasked with understanding the security implications of
requirements for new projects, especially those diverging from pre-
viously encountered domains, must navigate more complex waters.
Customized solutions become paramount in these scenarios, as the
characteristics and nuances of security requirements can significantly
vary across different domains. Such an approach necessitates a deeper,
more tailored analysis, acknowledging the distinctiveness of each do-
main. Thus, practitioners should be cautious in using models trained
on specific domain data without adjustments and evaluate the domain
adaptability of each model before deployment. The development of
domain-agnostic tools that leverage adaptable models could reduce the
need for multiple specialized tools, ensuring broader applicability. On
the other hand, researchers are encouraged to explore models that
can adapt to varying contexts without retraining, potentially through
meta-learning approaches or transfer learning strategies to improve
generalization capabilities.

RQ3 brings us to the cutting edge of our exploration, showcasing the
potential of transformer architectures in building inter-domain mod-
els. For practitioners equipped with adequate resources, these models
emerge as powerful tools that surpass the constraints outlined in RQ2.
By leveraging the advanced capabilities of transformer architectures,
practitioners can develop models that maintain high accuracy and
adaptability across various domains, mitigating the need for inter-
domain customization. Moreover, integrating pre-trained BERT models
into development pipelines could enhance the detection and categoriza-
tion of security requirements, improving the early phases of software
development and ensuring compliance with security standards. These
models’ adaptability to specific security contexts could also be used
to develop customized solutions for industries with stringent security
needs, such as finance and healthcare. For the researchers, the success
of pre-trained BERT models in inter-domain tuning opens up new
research avenues, including the fine-tuning of language models for
specialized applications that could extend beyond security to other
types of non-functional requirements. Further comparative analysis of
different pre-training corpora and their impacts on model performance
in specific application contexts could be beneficial.

In conclusion, for the research community, our findings offer a
foundational step toward achieving domain independence in detecting
security requirements.

The pursuit of this independence is challenging, thus the question:

To what extent can we truly achieve domain-agnostic
models in the field of security requirement detection?

This inquiry not only opens new avenues for research but also beck-
ons a deeper understanding of the interplay between machine learning
techniques and the multifarious nature of security requirements across
diverse domains.

5. Threats to validity

This section elaborates on the threats to validity of the performed
study, which stem mainly from the generalizability and repeatability of
the presented results and the correctness of the used tools.

Construct Validity. It involves determining how well a test mea-
sures the concept it evaluates by checking the adequacy of observa-
tions and inferences based on the measurements performed during the
study [45]. It is critical in establishing the overall validity of a method.
In our context, methods offered by the Scikit-learn library have been
used for the evaluation. In particular, we used the ac curacy_score7
method to measure Accuracy, the precision_score® method to
measure Precision, the recall_score’ method to measure Recall,
and the £1_score!” method to measure Fl-score.

As much as relying on the results of a single tool may pose a
threat to validity, especially in the case of deep learning applications,
since these metrics can be calculated mathematically, they should not
be tool-dependent. Furthermore, we apply these metrics because they
have been used in previous studies that analyzed approaches to detect
security requirements, and this allows the results obtained here to be
compared with those obtained in previous studies.

Internal Validity. It refers to the validity of results by considering
causality between action taken and the resulting change that can be
observed [45]. In our study for exploring the applicability of our
models to detect security-related aspects, we assume that these models
are comparable to each other, as they come from the same libraries,
i.e., Scikit-learn and Transformers.'' Causality could be a threat to the
internal validity of our study. However, the statistical test results show
that the measurements were significant, implying that the correlations
found derive from fairly strong causal relationships and reinforcing the
idea that the conditions for causality in the approach are met.

External Validity. It concerns the generalizability and repeatability
of the produced results [45] and, therefore, the usefulness of the results
of a research study, i.e., is the researchers’ results applicable in a real-
world context? Our approach is based on Python since the developed
models have been implemented with the libraries available in this
programming language.

7 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
accuracy_score.html
& https://scikit-learn.org/stable/modules/generated/sklearn. metrics.
precision_score.html
9 https://scikit-learn.org/stable/modules/generated/sklearn. metrics.recall_
score.html
10 https://scikit-learn.org/stable/modules/generated/sklearn. metries.f1_
score.html
11 https://huggingface.co/does/transformers/main/en/index#transformers
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As far as we know, the library can be used only in Python, so
the reproducibility of the BERT-based models in other programming
languages has not been studied in terms of feasibility. To demonstrate
the generalizability of our work, we apply a k-fold cross-validation
technique where possible, showing that the approach does not depend
on the data used for training. In addition, the considered datasets
are software specifications from different application domains, which
corroborates the result of our study, demonstrating applicability in
industrial environments. To promote the replication of this work, we
have made all the tools, scripts, and data available [16].

Conclusion Validity. It refers to the degree of reasonableness or
correctness of conclusions regarding the defined null hypothesis and
the performed statistical tests [45].

We consider McNemar's test to compare the performances of two
models because it has a lower probability of error and makes fewer
assumptions. When declaring that one model performs better than
another, we consider accepting a probability of 5% of committing a
Type-I-Error [42]. Thus, when null hypotheses are rejected, we consider
the relationship between data and result to be reasonable.

6. Conclusion

This study embark on an exploratory journey to harness advanced
ML techniques for the automatic detection of security-related require-
ments in software development. Through our comprehensive anal-
ysis, we have demonstrated the potential of both shallow ML and
advanced BERT-based transformer models in addressing the nuanced
challenges of security requirement identification. Indeed, our inves-
tigations across three distinct research questions revealed insightful
findings. For RQ1, we established that ensemble learning methods,
combining word-embedding techniques with shallow ML algorithms,
are highly effective in identifying security requirements within the
same domain. The results highlight that employing Word2Vec and
combining NuSVC, Logistic Regression, and Ridge Classifier CV in
a stacking ensemble allows us to achieve an Fl-score of 0.82 and
reached a maximum Precision of 0.84. For RQ2, we found that grid
search techniques outperform other methods when identifying security
requirements across different domains. In particular, fine-tuning the
hyperparameters for the combination of W2V and PAC has proven to be
the most effective strategy for identifying security requirements across
different domains. This approach reached a maximum Precision of 0.73
and achieved a Recall and F1-score of 0.64 each.

In addressing RQ3, our investigation demonstrated that employing
inter-domain BERT-based models, specifically CodeBERT and CweCve-
CodeBERT, constitutes a significant advancement in the task. While
both models showed promising outcomes, CweCveCodeBERT exhibited
a significant improvement over the standard BERT model. As a result,
CweCveCodeBERT was identified as the best model based on these
findings. This model, pre-trained on code and CWE/CVE descriptions,
demonstrated not only superior performance in terms of Precision
and Fl-score but also a remarkable adaptability across various in-
dustrial datasets, representing a significant step toward more reliable
and efficient security requirement detection in software engineering.
It addresses the critical gap in existing methodologies that predom-
inantly rely on lexical and syntactic features, thus offering a more
robust and nuanced approach to understanding and classifying security
requirements. This means that the integration of models like CweCve-
CodeBERT into standard software development pipelines could signif-
icantly enhance the early detection of security requirements, thereby
improving the security posture of the developed software. Moreover,
practitioners can explore customizing these models to their specific
organizational contexts or project requirements, potentially enhancing
their effectiveness further. Future research could delve into expanding
the training context of models like CweCveCodeBERT, perhaps incor-
porating more diverse datasets or even data from specific high-risk. On
the other hand, researchers can further explore the adaptability of these

models across a wider range of domains, particularly focusing on their
performance in less conventional or emerging fields. An essential area
of future work lies in enhancing the interpretability of these models.
Understanding how these models make their decisions is crucial for
trust and widespread adoption.

In conclusion, this study not only contributes significantly to the
existing body of knowledge in requirements engineering but also paves
the way for practical applications that can reshape the approach to
security in software development. By embracing the advancements
in ML and NLP, both practitioners and researchers can continue to
push the boundaries in the quest for more secure and robust software
systems.
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